

University of Science & Technology, Meghalaya

Department of Applied Biology

Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and

Course Outcomes (COs) | **B.Sc. Biotechnology**

Academic Session 2018-19

Programme outcomes (POs):

Upon completion of the course, Students will be able to:

- **PO1**. Understand themselves with basic and advanced knowledge in diverse areas of Biotechnology. As the programme covers areas like Molecular Biology, Biochemistry, Microbiology, Immunology, Bioinformatics, Genetic Engineering, Plant and Animal Biotechnology etc.
- **PO2**. Understand the potentials and impact of biotechnological innovations on industry, agriculture, environment and their implementation for finding sustainable solution to issues pertaining to these sectors.
- **PO3**. Design, conduct experiments, analyse and interpret data for investigating problems in biotechnology and allied fields.
- **PO4**. Learn advanced lessons in biological process meant for industrial and other purposes, especially the genetic manipulation of microorganisms for obtaining product that can make human life a better one.
- **PO5.** Equip themselves with basic and technical knowledge of biotechnology who can develop concept/product aiming at human welfare and environmental safety.
- **PO6.** Modify or upgrade the conventional biological concepts to enhance productivity of both plant and animal resources.
- **PO7.** Undertake any responsibility as an individual and as a team in a multidisciplinary environment.
- **PO8.** Develop thorough knowledge in Biotechnology and Allied Filed s and will also be ready to engage themselves in lifelong learning.
- **PO9.** Develop oral and written communication skills.
- **PO10.** Anticipate a challenging and ever-changing career as per the need of the industry.
- **PO11.** Conduct an independent or collaborative research practice, to discuss results, formulate statements, and write reports.

PO12. Apply the knowledge in biotechnology, will be prepared to work in laboratory, also they will apply scientific methods and good experimental designs in scientific experiments

Programme Specific Outcomes (PSOs):

PSO1. The objective of the Bachelor's Programme in Biotechnology is to increase the understanding of Biological Sciences with the implementation of technology on different living systems like plants, animals and microbes.

PSO2. It provides the opportunity in the field of research and engineering sectors such as food technology, nutrition, medicines, health care, forensic sciences etc.

PSO3. It increases the understanding of the Cytological, Biochemical and Physiological aspects of living organisms as well as the different technical aspects required for their study.

PSO4. It helps in understanding the technical aspects related to the improvement of crop plants and live-stocks and their by finding a solution at the time of population explosion.

PSO5. It helps in understanding the potential of biological agents in obtaining product of human interest and how some of the microbes are industrially exploited for obtaining such products.

PSO6. Students will understand and demonstrate laboratory safety procedures, as well as bioethical standards. The graduate will be aware of the need to constantly improve the professional and personal competencies.

SEMESTER-I

Course Structure:

Course	Course Title	Course	Credit	Nature		Marks Allotted	
Code		Code		of the Course	Internal	End Semester	Total
BBT 101	Biochemistry and Metabolism	C-1	4	Т	30	70	100
BBT 102	Cell Biology	C-2	4	Т	30	70	100
BBT 103	Communicative English	AECC-1	4	P	30	70	100
BBT 104	Biotechnology and Human Welfare	GE-1	4	P	30	70	100
BBT 105	Practical on Biochemistry & Metabolism and Cell Biology	P-1	4	P	30	70	100
	Total		20	-	150	350	500

COURSE	NAME OF THE	COURSE OUTCOME(CO.)
CODE	COURSE	COURSE OUTCOME(COs)
BBT-101	Biochemistry and	CO1. To understand the chemical basis of cellular life as well as the
	Metabolism	internal chemistry of biological systems of animals and plants.
		CO2. To get foundational knowledge for higher concepts in the fields
		of research related to cell biology, molecular biology, genetics,
		material sciences, regenerative sciences, neuroscience, psychology,
		kinesiology, etc.
		CO3. To understand the actual chemical concepts of biology through
		the functioning of various body processes and physiology using bio-
		molecules.
		CO4. To understand the concept of enzymes, its kinetics and
		importance in metabolism and other physiological reactions inside the
		cell.
		CO5. To understand the underlying concept of metabolism of
		carbohydrates and its importance in animal physiology.
BBT-102	Cell Biology	CO1. To have the concept of cell theory; structural organization and
		functions of prokaryotic and eukaryotic cells as well as their
		comparative account.
		CO2. To get an insight into the structural organization and functional
		roles of important cell organelles including plasma membrane,
		endoplasmic reticulum, golgi complex, lysosome, peroxisome,
		vacuoles and mitochondria.
		CO3. To understand the structural organization and functional roles
		nucleus, the controlling centre of a cell.
		CO4. To understand the structural organization and functional roles
		of cytoskeleton that gives specific shape and structure to a cell.
		CO5. To get an insight into various stages of cell cycle that regulates
		proper organization in cellular organisms.
		CO06. It also deals with the abnormalities during cell division process
		leading to cancer like problem.
BEN-711	Communicative	CO1. To enhance reading and writing abilities mainly focusing
	English	academic and day to day uses.

		CO2. To develop the idea of grammar usage (determiners, tenses,
		voice, direct and indirect speech, punctuation, word formation idioms
		and phrases) in developing communicating skills.
		CO3. To get an insight into the format of official correspondence,
		Letter (formal and informal), Circular and Notice.
		CO4. To develop the skill in writing Cvs/Resume, Essay, e-mail,
		Blog, Story and Paragraph which act as a source of communication at
		different platforms.
		CO5. To develop the skill in writing comprehension and precis that
		enables the students to understand a particular passage and express
		opinions in their own language.
BBT-104	Biotechnology and	CO1. To understand biotechnological application in deriving products
	Human Welfare	from plant and animal sources as well as the challenges of extracting
		compounds in a Comprehensive Product Development Plan.
		CO2. To get an insight in to the Biotechnological application in the
		field of agricultural including developing genetically modified
		organism (GMO) and transgenic plants.
		CO3. To understand the biotechnological in understanding and
		protecting the environment mainly through the development of
		biodegradable polymer.
		CO4. To get the basics of forensic science in solving crimes, paternity
		testing using DNA finger printing technique.
		CO5. To explore the scope and role of Medical Biotechnology in
		healthcare industry such as multiple uses of antibodies and vaccines.
BBT-105	Practical on	CO1. To get the idea of preparing of biochemical solution of different
	Biochemistry and	strength including Stock Solution, PPM, Per cent, Normal, Molar and
	Metabolism, Cell	Millimolar solutions.
	Biology and	CO2. To get an insight into the biochemical methods for the
	Biotechnology and	estimation of carbohydrates, proteins and amino acids- both
	Human Welfare	quantitatively and qualitatively.
		It also helps students to develop the idea of separation of plant
		pigments and amino acids using chromatographic methods of TLC/
		Paper chromatography.
		CO3. To understand the different stages of cell division process of
		mitosis and meiosis— chromosome staining in root tip and flower bud.

	It also deals with the various other cellular processes like plasmolysis,
	dialysis etc.
	CO4. To understand the mechanism of fermentation through the
	production of ethanol using Baker's yeast as a part of industrial
	application of microbes.
	CO5. To learn the molecular methods of isolation and analysis of
	DNA from biological samples using agarose gel electrophoresis.

Course				Cor	relation	with D	rogram	me Ou	tromes				C	orrelatio	n with P	rogramn omes	ne Speci	fic
Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 0	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6
BBT101#CO1	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT101#CO2	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT101#CO3	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT101#CO4	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT101#CO5	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT102#CO1	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT102#CO2	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT102#CO3	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT102#CO4	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT102#CO5	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT104#CO1	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT104#CO2	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT104#CO3	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT104#CO4	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT104#CO5	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	
BBT105#CO1	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT105#CO2	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT105#CO3	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT105#CO4	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT105#CO5	3	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3

SEMESTER-II

Course Structure:

Paper	Title	Credit	Nature	Marks Allotted				
Code		Code			Internal	End Semester	Total	
BBT-201	Mammalian Physiology	C-3	4	T	30	70	100	
BBT-202	Microbial and Plant Physiology	C-4	4	T	30	70	100	
BBT-203	Environmental Studies	AECC-2	4	P	30	70	100	
BBT-204	Developmental Biology	GE-2	4	P	30	70	100	
BBT-205	Practical on Mammalian Physiology and Microbial & Plant Physiology	P-2	4	P	30	70	100	
	Total		20	-	150	350	500	

COURSE	NAME OF THE	COURSE OUTCOMES (COs)
CODE	COURSE	
BBT-201	Mammalian	CO1. To understand the mechanism of digestion and respiration in
	Physiology	human.
		CO2. To understand the composition and circulation mechanism of
		blood and the working mechanism of heart in this process.
		CO3. To understand the structure of muscles and their contraction and
		relaxation mechanism. It also gives an insight in to the underlying
		principle of osmoregulation and modes of excretion.
		CO4. To understand the mechanism of nerve impulse and synaptic
		conduction associated with the process.
		CO5. To get an insight in to different endocrine glands, their structure
		and function as well as the types of hormones released by such glands
		that control various biological activities in human.

BBT-202	Microbial and Plant	CO1. To explore the different groups of microbes like
	Physiology	chemolithotrophs, hydrogen oxidizers, methanogens etc. based on
	Jan 189	their environmental adoptation.
		CO2. To understand the different groups of microbes based on their
		nutritional requirement and mode of nutrition.
		CO3. To understand the stages of photosynthesis mechanism like dark
		and light reactions in plants and microbes.
		CO4. The course deals with the study of different metabolic processes
		in plants and microbial growth and development.
		CO5. The principle and mechanism of Nitrogen metabolism and
		fixation is dealt in this course. Along with this different
		phytohormones and their functions, and mechanism photoperiodism
DTV 500		and also explained.
BEV-720	Environmental	CO1. To get an insight in to the multidisciplinary nature of
	Studies	environmental studies and its importance in other branches of sciences
		mainly to create public awareness regarding environment. It
		highlights the natural resources and associated problems in terms of
		non-renewable sources describing the role of an individual in
		conservation of natural resources.
		CO2. To have the concept of an ecosystem, it's structure and function
		with special emphasis on energy flow and ecological succession
		process.
		CO3. To have an idea about the concept of biodiversity at global,
		national and local levels; threats to biodiversity and conservation
		strategies.
		CO4. To get an insight in to the burning issue of environmental
		pollution describing the concept of pollutants, cause, effects and
		control measures of air, water, soil, noise, thermal and nuclear
		pollution.
		CO5. To understand the social issues related to the environment
		describing human role in biodiversity destruction and its conservation
		as well as the ethical and legal (Environment Protection Acts) issues
		related to the environment.
BBT-204	Developmental	CO1.To understand the basics of the process by which the living
	Biology	organisms grow and develop from a single cell.

		CO2.To acquaint on how continuity of life is maintained from one generation to another which involves genetic control of cell growth and development leading to cell differentiation and morphogenesis. CO3. To understand the technical aspects related to artificial insemination and in vitro fertilization. CO4. To get an insight in to the process of crop development using breeding approaches that can contribute to the efforts of achieving
		sustainable food security in times of over population.
		CO5. To have the concept of embryology that can be helpful in early
		diagnosis and treating diseases at embryonic level.
BBT-205	Practical on	CO1. To understand the principle and mechanism of blood group
	Mammalian	determination following slide agglutination.
	Physiology and	CO2. To develop the concept related to estimating RBC count in
	Microbial & Plant	mammalian blood as well as the normal level of haemoglobin which
	Physiology	is a part of common diagnostic system.
		CO3. To learn the principle and procedure of separating
		photosynthetic pigments by paper chromatography method.
		CO4. To understand the mechanism of symbiosis between
		rhizobacteria and leguminous plant with the help of root nodules.
		CO5. To study the different phases of growth in microbes as well as
		the effect of physical factors like pH and temperature on their growth.

			Co		: a.a	:4b D			Outo				С			th Pro	_	ne
Course		ı	COI	rreiat						omes	l	1		Sp	ecitic C	Outcon	nes	1
Outcomes	P O1	P O2	P 03	P 04	P O 5	P O 6	P O 7	P O 8	P O 9	PO 10	PO 10	PO 12	PS O1	PS O2	PS O3	PS O4	PS O5	PS 06
BBT201#C	OI	UZ	03	04	3	U	,	O	9	10	10	12	O1	02	03	04	03	00
O1	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT201#C																	_	
O2	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT201#C																		
O3	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT201#C																		
O4	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT201#C																		
O5	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT202#C				_		_	_		_	_		_			_		_	_
O1	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT202#C				_		_				_		_			_		2	
O2	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT202#C	1		_	2	1	2	0	0	_	2	1	_	_	1		1	2	2
O4 BBT202#C	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
O3	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT202#C	1	U		3	1	3	U	U		3	1		3	1		1	3	3
O5	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT205#C	_				_	_			_		_							
01	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT205#C																	_	
O2	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT205#C																		
O3	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT205#C																		
O4	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT205#C O5	3	1	0	2	3	1	0	0	2	3	1	2	3	1	2	1	3	3

SEMESTER-III

Course Structure:

Paper	Title	Course	Credit	Nature	N	Marks Allotted	
Code		Code			Internal	End Semester	Total
BBT-301	Genetics	C-5	4	T	30	70	100
BBT-302	General Microbiology	C-6	4	Т	30	70	100
BBT-303	Chemistry-1	C-7	4	P	30	70	100
BBT-304	Molecular Diagnostics	SEC-1	4	P	30	70	100
BBT-305	Bioethics and Biosafety	GE-3	4	P	30	70	100
BBT-306	Practical on Genetics, General Microbiology and Chemistry-1	P-3	4	P	30	70	100
	Total		20	-	150	350	500

COURSE	NAME OF THE	COURSE OUTCOMES (COs)							
CODE	COURSE								
BBT-301	Genetics	CO1. To understand the concept of gene (basic unit of genetic							
		character) and the basic principle of genetics (inheritance of							
		characters) as well as the concept of how mutation in gene can alter							
		characters in an individual.							
		CO2. To familiarize with concept of inheritance of characters from							
		parental line to the offspring following both Mendelian and non-							
		Mendelian pattern.							
		CO3. To explore the multifactorial pattern of inheritance including							
		the concept of chromosome structure and variation in chromatin							
		organization.							
		CO4. To develop the concepts of linkage, sex determination and sex							
		linked inheritance that helps to understand the different sex influenced							
		diseases in man and their pattern of inheritance.							
		CO5. To understand the phenomenon of organellar inheritance,							
		genome evolution and mutation and their influence in hereditary							
		diseases.							
BBT-302	General	CO1. To explore the fascinating world of microorganism and their							
	Microbiology	role (both beneficial and harmful) in day to day life.							

		It imparts knowledge on the various phases and contribution of
		different Scientists how Microbiology established itself as a separate
		branch of Science.
		CO2. To understand the different categories of microbes and sub-
		microbial groups with their position in the tree of life (classification),
		their characteristic features and importance.
		CO3. To become familiarize with the different technical aspects
		[isolation, cultivation, observation (microscopy), and identification]
		of studying microbes.
		CO4. To get an insight on the existence of microbes in different
		spheres of the environment and how the microbes are affected/induced
		in these environments or <i>vice versa</i> .
		CO5. To get the basic idea about the industrial application of different
		microbes for the production of single cell protein, beverages,
		industrial enzymes and genetically modified (GM) foods.
BBT-303	Chemistry-1	CO1. To understand the concept of Stereochemistry with the help of
		Fischer, Newmann and Sawhorse projection and Wedge formulae.
		CO2. To acquaint with various conformations of ethane, butane,
		ethane-1,2-diol and cyclohexane with reference to relative stability of
		different conformations in terms of energy difference.
		CO3. To understand the mechanism of addition reactions with the help
		of hydrogenation, hydrohalogenation, hydroxylation and ozonolysis
		in alkenes, alkynes, aldehydes and ketones. It also help in
		understanding the mechanism of substitution and elimination
		reactions among organic compounds.
		CO4. To understand the mechanism of oxidation reactions occurring
		in aromatic side chain compounds, alcohols, aldehydes and ketones
		and the rules governing such mechanisms.
		CO5. To understand the mechanism of catalytic hydrogenation,
		electrolytic and other reduction reactions occurring in aldeydes,
		ketones, carboxylic acids and their derivatives and nitro compounds.
BBT-304	Molecular	CO1. To explore the various immunoassays techniques for molecular
	Diagnostics	level diagnosis of diseases and disorders.
		CO2. To understand the different molecular approach for proper
		diagnosis of different diseases in man.
	<u> </u>	

		CO3. To understand the resistance mechanisms developed in different
		microbes against chemotherapeutic agents and their resistance profile.
		CO4. To develop the concept on antimicrobial susceptibility testing
		methods and to check the antibiotic susceptibility profile of
		pathogenic microbes.
		CO5. To have the concept on application of latest automated
		instruments for proper identification of pathogenic microbes.
BBT-305	Bioethics and	CO1. To understand the fundamentals of bioethics and ethical issues
	Biosafety	related to molecular technologies.
		CO2. To have the concept on the ethical issues concerned with clinical
		trials, medical errors, negligence etc.
		CO3. To understand the safety issues and ethical use of animals in the
		laboratory.
		CO4. To get an insight into the good laboratory practices in different
		biological laboratories.
		CO5. To get an insight in to the guidelines and precautions on using
		radioisotopes in laboratory practices.
BBT-306	Practical on	CO1. To understand the principle and applications of important
	Genetics, General	instruments (biological safety cabinets, autoclave, incubator, hot air
	Microbiology and	oven, light microscope, pH meter) used in the microbiology
	Chemistry-1	laboratory. Students also learn the basics of preparing common
		microbial media used for isolation and maintenance of microbial
		isolates.
		CO2. To get an insight into the laboratory techniques for the isolation
		and enumeration of microorganisms from different environmental
		spheres like soil, water and air.
		Students also learn the basics of isolating bacteria in pure cultures by
		streaking method and determination of bacterial growth curve.
		CO3. To understand the basis of Mendelian principle of inheritance as
		well as the stages of division in vegetative and reproductive cells.
		CO4. To determine purity of organic compounds by crystallization
		using polar and non-polar solvents and estimating their optical activity
		by using polarimeter
		CO5. To learn the use of Kjeldahl apparatus for estimating the melting
		points of organic compounds.
	1	

Course		Correlation with Programme Outcomes												Correlation with Programme Specific Outcomes						
Outcomes	P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	PO 10	PO 10	PO 12	PS O1	PS O2	PS O3	PS O4	PS O5	PS 06		
BBT301#C O1	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT301#C	1	0		3	1		0	0			1		3	1		1	3	3		
O2	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT301#C O3	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT301#C	1	U		3	1	3	0	0		3	1		3	1		1	3	3		
O4	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT301#C	1	0	2	_	,	2				2	,	_	2				2	2		
O5 BBT302#C	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
O1	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT302#C																				
O2	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT302#C O3	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT302#C														-						
O4	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT302#C O5	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT303#C	1	U		3	1	3	U	0		3	1		3	1		1	3	3		
O1	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT303#C			2										2					_		
O2 BBT303#C	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
O3	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT303#C																				
O4	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT303#C O5	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT304#C																				
01	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT304#C O2	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT304#C	1	U			1		0	0			1			1		1				
O3	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT304#C O4	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT304#C	1	U		3	1	3	U	U		3	1		3	1		1	3	3		
O5	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT305#C		_	_	_		_	_	_		_			_					_		
O1 BBT305#C	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
O2	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT305#C		_																		
03	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT305#C O4	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT305#C	1	U		ر	1		U	0		ر	1		3	1		1	3	<u> </u>		
O5	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT306#C O1	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT306#C																				
O2	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		

BBT306#C																		
O3	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT306#C																		
O4	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT306#C																		
O5	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3

SEMESTER-IV

Course Structure:

Paper	Title	Course	Credit	Nature		Marks Allotted					
Code		Code					T				
					Internal	End Semester	Total				
BBT-401	Molecular Biology	C-8	4	Т	30	70	100				
BBT-402	Immunology	C-9	4	T	30	70	100				
BBT-403	Chemistry-2	C-10	4	P	30	70	100				
BBT-404	Enzymology	SEC-2	4	P	30	70	100				
BBT-405	Entrepreneurship Development and IPR	GE-4	4	P	30	70	100				
BBT-406	Practical on Molecular Biology,	P-4	4	P	30	70	100				
	Immunology, Enzymology and Chemistry-2										
	Total		P-3	-	150	350	500				

COURSE	NAME OF THE	COURSE OUTCOMES (COs)
CODE	COURSE	
BBT-401	Molecular Biology	CO1. To get an insight in to the molecular basis of biological activity
		between biomolecules in the various systems of a cell.
		CO2. To have the basics of DNA, RNA, and proteins; their structure
		and interactions within the cell to promote growth, division and
		development.
		CO3. To understand the different mechanism DNA replication
		adopted in prokaryotic and eukaryotic system.
		It also highlights the factors inducing and inhibiting replication.
		CO4. To get an insight in to the wide range of mechanisms required
		for the regulation of transcription, translation and expression of gene
		in prokaryotic and eukaryotic system.

		CO5. To understand the responses to environmental or physiological
		changes or alterations of cell function brought about by mutation. It
		also highlights the molecular basis for cancer and other related
		abnormalities and the molecular tools and techniques to study such
		abnormalities.
BBT-402	Immunology	CO1. To familiarize with the concept of non-specific (innate) and
		specific (acquired) resistance mechanism developed in man against
		pathogens and other non-self-factors which is the basis of this course.
		CO2. To get an insight into the formation, types, organization and
		functional specificity of different cellular and organ level components
		conferring resistance in man.
		CO3.To familiarize with the nature, types and function of antigens
		that induce immunological response in man and how the product of
		this response (antibody, B and T cells) help in neutralizing them
		(agglutination and precipitation reactions).
		It also deals with the different diagnostic and serological approaches
		for the study of interaction between an antigen and its specific
		antibody including Widal Test, immunodiffusion, Immuno-
		electrophoresis, ELISA, RIA etc.
		CO4. To have the concept of different mediators/cell signaling
		molecules (complement, cytokines: interferons, Interleukins,
		heamatopoetins and chemokines) associated with immunological
		responses as well as their biological consequences.
		CO5. To understand the immune disorders (hypersensitivity,
		autoimmune disorders, oncogenesis etc.) and induced immunity
		(vaccination) to overcome such abnormalities.
BBT-403	Chemistry-2	CO1. To understand the structure of molecule following valence bond
		approach as well as the concept of resonance in various organic and
		inorganic compounds. It also gives an idea VSEPR model for
		predicting shapes of molecules and ions containing lone pairs, sigma
		and pi bonds.
		CO2. To get an idea on various intermolecular forces like van der
		Waals forces, Hydrogen bonding and their effects on melting point,
		boiling point and solubility of compounds.
		CO3. To have the concept on transition elements specifically their
		electronic configuration, variable valency, color, magnetic and

		catalytic properties, ability to form complexes and stability of various
		oxidation states (Latimer diagrams) for with special reference to Mn,
		Fe and Cu.
		CO4. To understand the concept of Valence Bond Theory with
		reference to inner and outer orbital complexes of Cr, Fe, Co, Ni and
		Cu; their structural and stereoisomerism with coordination numbers 4
		and 6.
		CO5. To understand the concept of Crystal Field Theory with
		reference to crystal field effect for weak and strong fields and crystal
		field stabilization energy.
BBT-404	Enzymology	CO1. To have the concept of different terminologies in understanding
		enzymes as well as their historical perspective.
		CO2. To familiarize with basics of enzymes, their kinetics, inhibition
		and their applications in various fields.
		CO3. The course provides the basic understanding of enzyme
		classification, nomenclature and synthesis.
		CO4. The course highlights the concepts of Enzyme kinetics and
		mechanism of inhibition, units and underlying principle of
		measurement of enzyme activity.
		CO5. The students can earn the knowledge of different applications of
		enzymes in various industry and medical field.
BBT-405	Entrepreneurship	CO1. To have the basic concepts on entrepreneurship that can guide
	Development and	the students for becoming a good entrepreneur as they are ushered to
	IPR	know market, excise and other development processes.
		CO2. To understand of importance of market concept in
		entrepreneurship.
		CO3. To have knowledge on Intellectual Property in protecting one's
		idea, concept or a product.
		CO4. To have an understanding on Patent, Geographical indication,
		Copyright, Trademark, and Trade secret to become aware of
		protecting innovations and noble work.
		CO5. To gain knowledge on Indian Patent Law, World Trade
		Organization and its related Intellectual Property provisions.
BBT-406	Practical on Mol.	CO1. To learn the molecular methods of isolation of DNA/RNA from
	Biology,	plant animal and microbial sources and their quantification using UV-
	Immunology,	VIS spectrophotometric analysis. It also helps in learning the method

	Chemistry-2 and	of separating of DNA bands by agarose gel electrophoresis on the
E	Enzymology	basis of their molecular weight.
		CO2. To understand the principle and process of blood group
		determination following slide agglutination test, blood cell count
		following blood film preparation and immune-diagnostic methods like
		Radial immunoassay and ELISA.
		CO3. To understand the process of preparations of standard solutions
		using the concept of primary and secondary standards as well as
		different units of concentration like molarity, molality, and normality.
		CO4. To familiarize with the process of titrimetric analysis involving
		Acids-Bases, Redox reactions and Complexometric Titrations.
		CO5. To learn the laboratory method of Isolation and purification of
		an extracellular enzyme and etermination of Km and Vmax value for
		that enzyme.

Course			Cor	relat	ion w	ith P	rogra	mme	Outo	omes			Correlation with Programme Specific Outcomes							
Outcomes	P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	PO 10	PO 10	PO 12	PS O1	PS O2	PS O3	PS O4	PS O5	PS O6		
BBT401#C																				
O1	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT401#C																				
O2	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT401#C				_	_				_			_			_					
O3	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT401#C				_								_			_			2		
O4	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT401#C		_	_	_	1	_	_	_	_	_	1	_	2	1		1	2	2		
O5 BBT402#C	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
O1	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT402#C											-			-						
O2	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT402#C																				
O3	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT402#C																				
O4	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT402#C																				
O5	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT403#C																				
O1	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT403#C O2	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		

BBT403#C															I	I		
O3	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT403#C	1	U		3	1	3	U	U		3	1		3	1		1	3	3
O4	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
	1	U		3	1	3	U	U		3	1		3	1		1	3	3
BBT403#C O5	1	0	2	3	1	2	0	0	2	3	1	2	3	1	2	1	2	3
BBT404#C	1	U		3	1	3	U	U		3	1	2	3	1		1	3	3
	1	0	2	2	1	2	0	0	2	3	1	2	2	1	2	1	3	3
O1 BBT404#C	1	U	2	3	1	3	0	0		3	1	2	3	1		1	3	3
O2	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
	1	U	2	3	1	3	U	U		3	1		3	1		1	3	3
BBT404#C	1	0	2	3	1	3	0	0	2	3	1	2	3	1	_	1	3	2
O3	1	U	2	3	1	3	U	U		3	1	2	3	1	2	1	3	3
BBT404#C	1	0	2	2	1	2	0	0	2	3	1	2	3	1	2	1	3	3
O4	1	0	2	3	1	3	0	0	2	3	1	2	3	1		1	3	3
BBT404#C	1	0	2	2		2	0		2	2	1	2	2	1	_		2	2
O5	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT405#C		0	•	2		2	0		2	2	,		2				2	2
01	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT405#C	1	0	2	2		2	0		2	2	1	2	2	1	_		2	2
O2	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT405#C		0	•	2		2	0		2	2	,		2				2	2
O3	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT405#C		0	•	2		2	0		2	2	,		2				2	2
04	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT405#C		0	•	2		2	0		2	2	,		2				2	2
O5	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT406#C	1		2						_	2			2	1	_		2	
01	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT406#C			_	_		_	_		_	_			_		_		_	
O2	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT406#C			_	_		_	_		_	_			_		_		_	
O3	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT406#C																	_	
O4	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT406#C																	_	
O5	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3

SEMESTER-V

Course Structure:

Paper	Title	Course	Credit	Nature		Marks Allotted				
Code		Code			Internal	End Semester	Total			
BBT-501	Industrial Fermentations	C-11	4	T	30	70	100			
BBT-502	Recombinant DNA Technology	C-12	4	T	30	70	100			
BBT-503	Plant Biotechnology	DSE-1	4	P	30	70	100			
BBT-504	Bioinformatics and Biostatistics	DSE-2	4	P	30	70	100			
BBT-505	Practical on Industrial Fermentations, Recombinant DNA Technology, Bioinformatics and Chemistry 3	P-5	4	P	30	70	100			
	Total		P-4	-	150	350	500			

COURSE	NAME OF THE	COURSE OUTCOMES (COs)									
CODE	COURSE										
BBT-501	Industrial	CO1. To have a comparative account on old and recent techniques for									
	Fermentations	screening industrially important microorganisms.									
		CO2. To understand the principle and types of bioreactor and their									
		industrial application.									
		CO3. To explore the different production approaches for industrial									
		products like organic acid, alcohol, enzymes, single cell protein etc.									
		CO4. To understand the principles of food preservation using									
		fermentation processes. Students get acquainted to different kinds of									
		Bioreactors and fermenters used for the purpose.									
		CO5. To develop the concept for genetic improvement of industrially									
		useful microbes as well as the process and role of enzyme									
		immobilization in food industries.									
BBT-502	Recombinant DNA	CO1. To have the basic concept of rDNA technology as the basis of									
	Technology	genetic modification of cellular organisms.									

		CO2. To understand the types, nature and functions of restriction
		enzymes that act as the mediators of DNA modification during genetic
		manipulation process.
		It also gives an insight into the concept of different vectors (plasmids,
		cosmids, phagemids, and artificial chromosome vectors) that act as
		carrier of DNA fragment between cellular organisms during genetic
		modification.
		CO3. To understand the methods in molecular cloning process for
		transformation and delivery of gene with special emphasis on different
		blotting techniques (Southern, Northern and Western) in hybridization
		process.
		CO4. To get an insight in to one of the most versatile molecular
		technique of Polymerized Chain Reaction (PCR); principle, types,
		applications and different PCR based and PCR independent marker
		(RAPD, RFLP, AFLP) methods in Molecular Biology.
		It also describes the construction and screening genomic and cDNA
		libraries.
		CO5. To understand the application of rDNA technology for the
		production of human therapeutic agents (insulin, HGH, recombinant
		vaccines) and transgenic crops.
BBT-503	Plant	CO1. To familiarize with the techniques of plant tissue culture,
	Biotechnology	mechanisms of gene transfer and various molecular markers.
		CO2. To deals with different media preparation methods and study
		the role of micro- and macronutrients, hormones, vitamins, etc. in
		plant tissue culture.
		CO3. To have the basic understanding of plant tissue culture and its
		maintenance, callus culture and suspension culture.
		CO4. To understand the various vectorless and vector mediated gene
		transfer methods in plants improvement.
		CO5. To learn the principle and use of molecular markers, and their
		applications in Plant Biotechnology as well as to get the insight in to
		the concept of somaclonal variation, callus cultur, totpotency, hybrid
DDT 504	Diginformatics on 1	and cybrids.
BBT-504	Bioinformatics and	CO1. To understand the contents and properties of bioinformatics
	Biostatistics	databases; perform text- and sequence-based searches, and analyze
		and discuss the results in light of molecular biological knowledge.

		CO2. To learn about the major steps in pair wise and multiple
		sequence alignment, and execute pair wise sequence alignment by
		dynamic programming.
		CO3. To learn the techniques of predicting the secondary and tertiary
		structures of protein sequences.
		CO4. To become familiar with the use of a wide variety of internet
		applications, biological database that can be applied in solving
		research problems.
		CO5. To understand the theoretical and practical development of
		useful tools for automation of complex computer jobs, and making
		these tools accessible on the network from a Web browser.
BBT-505	Practical on	CO1. To understand the design and working principle of a fermenter
	Industrial	and its use in the industrial production of solvent, enzymes etc.)
	Fermentation,	CO2. To acquaint with methods for the isolation of chromosomal
	Recombinant DNA	DNA from plant and microbial cells, their qualitative and quantitative
	Technology, Plant	analysis as well as to become familiar with the technical process of
	Biotechnology and	PCR.
	Bioinformatics &	CO3. To learn the preparation of medium used in plant tissue culture
	Biostatistics	and carry out the process like micropropagation and artificial seed
		preparation.
		CO4. To learn the methods of statistical analysis (like t, f, z and Chi-
		square test) of different paired and unpaired data
		CO5. To understand the practical aspects of Bioinformatics including
		a. operating systems like UNIX, LINUX and Windows;
		b. bioinformatics databases systems like NCBI/ PDB/ DDBJ, Uniprot,
		PDB;
		c. sequence retrieval using BLAST and sequence alignment &
		phylogenetic analysis using clustalW & phylip;
		d. protein structure prediction using psipred, homology modeling
		using Swissmodel, and molecular visualization using jmol.

Course		Correlation with Programme Outcomes													Correlation with Programme Specific Outcomes					
Outcomes	P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	PO 10	PO 10	PO 12	PS O1	PS O2	PS O3	PS O4	PS O5	PS 06		
BBT501#C																				
O1	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT501#C																				
O2	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT501#C		_	_					_	_	_		_			_		_	_		
O3	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT501#C		0	_					_	_											
04	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT501#C	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
O5 BBT502#C	1	U		3	1	3	U	U		3	1		3	1		1	3	3		
O1	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT502#C	1	U		3	1	3	U	U		3	1		3	1		1	3	3		
O2	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT502#C	-	0			-			0			-			1		1	3			
03	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT502#C																				
04	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT502#C																				
O5	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT503#C																				
O1	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT503#C																				
O2	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT503#C																				
O3	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT503#C			_						_						_		_			
04	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT503#C	1	0	2	3	1	2	_	0	2	2	1	_	2	1	2	1	2	2		
O5 BBT504#C	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
O1	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT504#C	1	U		3	1	3	U	U		3	1		3	1		1	3	3		
O2	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT504#C		0			-						-			1		1	3			
03	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT504#C																				
O4	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT504#C																				
O5	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT505#C																				
O1	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT505#C																				
O2	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT505#C																				
O3	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT505#C																				
O4	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		
BBT505#C			_	_		_	_	_	_	_		_	_				_			
O5	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3		

SEMESTER-VI

Course Structure:

Paper	Title	Course	Credit	Nature	Marks Allotted					
Code		Code			Internal	End Semester	Total			
BBT-601	Bio Analytical Tools	C-13	4	T	30	70	100			
BBT-602	Genomics and Proteomics	C-14	4	Т	30	70	100			
BBT-603	Environmental Biotechnology	DSE-3	4	P	30	70	100			
BBT-604	Animal Biotechnology	DSE-4	4	P	30	70	100			
	Practical on Bio Analytical Tools, Environmental Biotechnology and Plant Biotechnology	P-6	4	P	30	70	100			
	Total		20	-	150	350	500			

COURSE	NAME OF THE	COURSE OUTCOMES (COs)
CODE	COURSE	
BBT-601	Bio Analytical	CO1. To familiarize with the important techniques necessary for the
	Tools	study and prediction of different processes occurring in microbes and
		other cellular organisms.
		CO2. To understand the importance, principle and types of
		chromatography techniques and their role in the study of biological
		system.
		CO3. To develop the concept on principle and types of electrophoretic
		techniques and their role in the study of biological system.
		CO4. To get an insight in to the principle and types of centrifugation
		techniques and their role in the study of biological system. It also gives
		the concept of radioactivity and its application in biochemical and
		immunological processes.
		CO5. To familiarize with advanced techniques -Protein
		Crystallization, MALDI-TOF, Mass Spectrometry, Enzyme and Cell
		Immobilization which are extensively used in Industrial and R & D
		sectors.
BBT-602		CO1. To have the basic concept of Genomics and proteomics.

		CO2. To learn different DNA sequencing methods used in sequencing						
		of genome like manual & automated: Maxam & Gilbert and Sangers						
		method.						
		CO3. To understand the process of Managing and Distributing						
		Genome Data such as Web based servers and softwares for genome						
	Genomics and	analysis: ENSEMBL, VISTA, UCSC Genome Browser, NCBI						
	Proteomics	genome.						
		CO4. To develop the knowledge of protein structure, function and						
		different methods of analizing proteins using molecular tools and						
		techniques.						
		CO5. To get the basics of analytical Proteomics and its application.						
BBT-603	Environmental	CO1. To understand the environment around us and the organisms						
	Biotechnology	living in normal and extreme conditions of the environment.						
		CO2. To learn the utilization of the unique properties microorganisms						
		living in the extreme habitats to remediate degraded environment:						
		such as solid and liquid waste management.						
		CO3. To have the concept of bioremediation with special reference to						
		the remediation of heavy metals and oil spills.						
		CO4. To get the information on the ethical and safety issues concerned						
		with Biotechnological experiments.						
		CO5. To know about intellectual property right (IPR), in protecting						
		one's innovations and unique works.						
BBT-604	Animal	CO1. To familiarize with the techniques of animal cell culture,						
	Biotechnology	mechanisms of gene transfer and various molecular marker assisted						
		methods in improvement of live-stocks.						
		CO2. To have knowledge on different cell culture media and their						
		preparation methods.						
		CO3. To explore the biomedical research involving tissue engineering						
		that aims to grow and replace tissue in-vitro using stem cell						
		technology.						
		CO4. To understand the various vectorless and vector mediated gene						
		transfer methods used in animal cell cloning.						
		CO5. To get the basics of artificial insemination and embryo transfer						
		techniques for the improvement of live-stocks. This practical course						
		gives the idea of analytical methods used in biological laboratories,						
		application such methods in solving issues related to the environment						
	1	1						

	1										
		as well as the approaches for improving live-stock using technology.									
		After successful completion, this course enables students									
BBT-605	Practical on Bio-	CO1. To learn the method of protein analysis under reducing									
	Analytical Tools,	conditions using SDS-polyacrylamide slab gel electrophoresis.									
	Genomics and	It also helps in understanding the principle and application of									
	Proteomics,	chromatography methods for the identification of amino acids and									
	Environmental and	lipids.									
	Animal	CO2. To acquaint with the use of SNP databases at NCBI and other									
	Biotechnology	sites and OMIM database for the genomics level study.									
		CO3. To understand the quality/potability of water throug									
		bacteriological analysis of water samples.									
		It also deals with the laboratory methods for the estimation of									
		Dissolved Oxygen (DO), Chemical Oxygen Demand (COD) and									
		Biochemical Oxygen Demand (BOD) through which the condition of									
		a water body can be determined.									
		CO4. To learn the laboratory conditions and the concept of minimal									
		essential growth medium required during animal cell culture.									
		CO5. To learn the molecular method for the isolation and									
		quantification of DNA from animal tissue using Agarose Gel									
		Electrophoresis.									
HVP-760	Fundamentals of	CO1. To introduce the students about the importance of human values									
	Human Values and	and professional ethics.									
	Professional Ethics	CO2. To understand the ethical concerns in professional and personal									
		space.									
L	1										

Course			Cor		ion w		Correlation with Programme Specific Outcomes											
Outcomes	P	P	P	P	P	P	P	P	P	DO.	DO.	DO.	DC	DC	DC	DC	DC	DC
	0	0 2	O 3	O 4	O 5	O 6	O 7	O 8	O 9	PO 10	PO 10	PO 12	PS O1	PS O2	PS O3	PS O4	PS O5	PS 06
BBT601#C																		
O1	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT601#C																		
O2	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT601#C			_									_			_			2
03	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT601#C O4	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT601#C	1	U		3	1	3	U	U		3	1		3	1		1	3	3
O5	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT602#C	1	U		3	1	3	U	U		3	1		3	1		1	3	3
O1	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT602#C	1	0			-			0						1			3	
O2	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT602#C											-							
O3	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT602#C																		
O4	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT602#C																		
O5	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT603#C																		
O1	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT603#C																		
O2	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT603#C			_	2								_						2
03	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT603#C O4	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT603#C	1	U		3	1	3	U	U		3	1		3	1		1	3	3
O5	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT604#C	1	0		3	1	3	0	0		3	1		3	1		1	3	3
O1	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT604#C											-							
O2	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT604#C																		
O3	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT604#C																		
O4	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT604#C																		
O5	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT605#C																		
O1	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT605#C																		
O2	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT605#C			-	_	_	_	_	_	_	_		_	_		_		_	
O3	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT605#C	_		_	_	_	_	_	_	_	_		_	_		_		_	
04 PDT-605#G	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3
BBT605#C	1		2	2	1	2	_	0	2	2	1	2	2	1	2	1	2	2
O5	1	0	2	3	1	3	0	0	2	3	1	2	3	1	2	1	3	3